loveandberry.info
Главная

Что такое

Что такое Глава 6

^ БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ

Общее понятие о биологическом круговороте веществ

Биологический круговорот веществ как форма развития планеты Земля

Элементы биогеохимического круговорота веществ в природе

Параметры биогеохимического круговорота на суше

Биологический круговорот и почвообразование

^ ОБЩЕЕ ПОНЯТИЕ

Биологический круговорот веществ представляет собой совокупность процессов поступления химических элементов из почвы и атмосферы в живые организмы, биохимического синтеза новых сложных соединений и возвращения элементов в почву и атмосферу с ежегодным спадом части органического вещества. Биологический круговорот веществ не является полностью компенсированным замкнутым циклом, поэтому в ходе его почва обогащается гумусом и азотом, элементами минерального питания (так называемыми биогенными элементами), что создает благоприятную основу для существования растительных организмов.

Биологическое, биохимическое и геохимическое значение процессов, осуществляемых в биологическом круговороте веществ, впервые показал В. В. Докучаев, создав учение о зонах природы. Далее оно было раскрыто в трудах В. И. Вернадского, Б. Б. Полынова, Д. Н. Прянишникова, В. Н. Сукачева, Н. П. Ремезова, Л. Е. Родина, Н. И. Базилевич, В. А. Ковды и других исследователей.

Международный союз биологических наук (International Union of Biological Sciences) осуществил широкую программу исследований биологической продуктивности биогеоценозов суши и водоемов. Для руководства этими исследованиями была создана Международная биологическая программа (International Biological Programme). С целью унификации применяемых в современной литературе терминов и понятий по Международной Биопрограмме была проведена определенная работа. Прежде чем мы приступим к изучению природных биологических круговоротов веществ, необходимо дать пояснения к наиболее часто употребляемым терминам.

Биомасса - масса живого вещества, накопленная к данному моменту времени.

^ Биомасса растений (синоним - фитомасса) - масса живых и отмерших, но сохранивших свое анатомическое строение к данному моменту организмов растительных сообществ на любой площади.

^ Структура биомассы - соотношение подземной и надземной частей растений, а также однолетних и многолетних, фотосинтезирующих и нефотосинтезирующих частей растений.

Ветошь - отмершие части растений, сохранившие механическую связь с растением.

^ Опад - количество органического вещества растений, отмерших в надземных и подземных частях на единице площади за единицу времени.

Подстилка - масса многолетних отложений растительных остатков разной степени минерализации.

Прирост - масса организма или сообщества организмов, накопленная на единице площади за единицу времени.

^ Истинный прирост - отношение величины прироста к величине опада за единицу времени на единице площади.

Первичная продукция - масса живого вещества, создаваемая автотрофами (зелеными растениями) на единице площади за единицу времени.

^ Вторичная продукция - масса органического вещества, создаваемая гетеротрофами на единице площади за единицу времени.

Емкость биологического круговорота - количество химических элементов, находящихся в составе массы зрелого биоценоза (фитоценоза).

Интенсивность биологического круговорота - количество химических элементов, содержащихся в приросте фитоценоза на единице площади в единицу времени.

Скорость биологического круговорота - промежуток времени, в течение которого элемент проходит путь от поглощения его живым веществом до выхода из состава живого вещества. Определяют с помощью меченых атомов.

По Л. Е. Родину, Н. И. Базилевич (1965), полный цикл биологического круговорота элементов слагается из следующих составляющих.


  1. Поглощение ассимилирующей поверхностью растений из атмосферы углерода, а корневыми системами из почвы — азота, зольных элементов и воды, закрепление их в телах растительных организмов, поступление в почву с отмершими растениями или их частями, разложение опада и высвобождение заключенных в них элементов.

  2. Отчуждение частей растений питающимися ими животными, превращение их в телах животных в новые органические соединения и закрепление части из них в животных организмах, последующее поступление их в почву с экскрементами животных или с их трупами, разложение и тех и других и высвобождение заключенных в них элементов.

  3. Газообмен между ассимилирующей поверхностью растений и атмосферой, между корневой системой и почвенным воздухом.

  4. Прижизненные выделения надземными органами растений и в особенности корневыми системами некоторых элементов непосредственно в почву.

Для познания круговорота веществ в рамках биогеоценоза необходимо охватить исследованиями все группы организмов: растения, животных, микрофлору и микрофауну. Не все составляющие биологического круговорота изучены в равной степени, наиболее полно исследованы динамика органического вещества и биологический круговорот азота и зольных элементов, осуществляемый растительным покровом.

^ БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ КАК ФОРМА РАЗВИТИЯ ПЛАНЕТЫ ЗЕМЛЯ

Структура биосферы в самом общем виде представляет собой два крупнейших природных комплекса первого ранга - континентальный и океанический. Растения, животные и почвенный покров образуют на суше сложную мировую экологическую систему. Связывая и перераспределяя солнечную энергию, углерод атмосферы, влагу, кислород, водород, азот, фосфор, серу, кальций и другие биофильные элементы, эта система формирует биомассу и генерирует свободный кислород.

Водные растения и океан образуют другую мировую экологическую систему, выполняющую на планете те же функции связывания солнечной энергии, углерода, азота, фосфора и других биофилов путем образования фитобиомассы, высвобождения кислорода в атмосферу.

Существует три формы накопления и перераспределения космической энергии в биосфере. ^ Суть первой из них в том, что растительные организмы, а через пищевые цепи и связанные с ними животные и бактерии вовлекают в свои ткани многие соединения. Эти соединения содержат Н2, О2, N, P, S, Са, К, Mg, Si, Al, Mn и другие биофилы, многие микроэлементы (I, Co, Cu, Zn и т.д.). При этом происходит селекция легких изотопов (С, Н, О, N, S) от более тяжелых. Прижизненно и посмертно организмы суши, водной и воздушной среды, находясь в состоянии непрерывного обмена с окружающей средой, воспринимают и отдают широкий и разнообразный спектр минеральных и органических соединений. Суммарная масса и объем продуктов прижизненного обмена организмов и среды (метаболитов) превышают биомассу живого вещества в несколько раз.

^ Вторая форма накопления, удержания и перераспределения космической энергии Солнца на планете в ее биосфере проявляется через нагревание водных масс, образование и конденсацию паров, выпадение атмосферных осадков и движение поверхностных и грунтовых вод по уклону от областей питания к областям испарения. Неравномерное нагревание воздуха и воды вызывает планетарные перемещения водных и воздушных масс, формирование градиентов плотности и давления, океанические течения и грандиозные процессы атмосферной циркуляции.

Эрозия, химическая денудация, транспорт, перераспределение, осаждение и накопление механических и химических осадков на суше и в океане являются третьей формой передачи и превращения этой энергии.

Все эти три планетарных процесса тесно переплетаются; образуя общеземной круговорот и систему локальных круговоротов вещества. Таким образом, за миллиарды лет биологической истории планеты сложились великий биогеохимический круговорот и дифференциация химических элементов в природе. Они создали современную биосферу и являются основой ее нормального функционирования.

^ ЭЛЕМЕНТЫ БИОГЕОХИМИЧЕСКОГО КРУГОВОРОТА ВЕЩЕСТВ В ПРИРОДЕ

Элементами биогеохимического круговорота веществ являются следующие составляющие.


  1. Регулярно повторяющиеся или непрерывно текущие процессы притока энергии, образование и синтез новых соединений.

  2. Постоянные или периодические процессы переноса или перераспределения энергии и процессы выноса и направленного перемещения синтезированных соединений под влиянием физических, химических и биологических агентов.

  3. Направленные ритмические или периодические процессы последовательного преобразования: разложения, деструкции синтезированных ранее соединений под влиянием биогенных или абиогенных воздействий среды.

4. Постоянное или периодическое образование простейших минеральных и органоминеральных компонентов в газообразном, жидком или твердом состоянии, которые играют роль исходных компонентов для новых, очередных циклов круговорота веществ.

В природе протекают как биологические циклы веществ, так и абиогенные циклы.

^ Биологические циклы - обусловлены во всех звеньях жизнедеятельностью организмов (питание, пищевые связи, размножение, рост, передвижение метаболитов, смерть, разложение, минерализация).

^ Абиогенные циклы - сложились на планете намного раньше биогенных. Они включают весь комплекс геологических, геохимических, гидрологических, атмосферных процессов.

В добиогенный период планеты в геологических, гидрологических, геохимических, атмосферных круговоротах определяющая роль принадлежала водной и воздушной миграции и аккумуляции. В условиях развитой биосферы круговорот веществ направляется совместным действием биологических, геологических и геохимических факторов. Соотношение между ними может быть разным, но действие обязательно совместным! Именно в этом смысле употребляются термины - биогеохимический круговорот веществ, биогеохимические циклы.

Ненарушенные биогеохимические циклы носят почти круговой, почти замкнутый характер. Степень повторяющегося воспроизводства циклов в природе очень велика и, вероятно, как считает В. А. Ковда, достигает 90— 98%. Тем самым поддерживается известное постоянство и равновесие состава, количества и концентрации компонентов, вовлеченных в круговорот, а также генетическая и физиологическая приспособленность и гармоничность организмов и окружающей среды. Но неполная замкнутость биогеохимических циклов в геологическом времени приводит к миграции и дифференциации элементов и их соединений в пространстве и в различных средах, к концентрированию или рассеянию элементов. Именно поэтому мы наблюдаем биогенное накопление азота и кислорода в атмосфере, биогенное и хемогенное накопление соединений углерода в земной коре (нефть, уголь, известняки).

^ ПАРАМЕТРЫ БИОГЕОХИМИЧЕСКОГО КРУГОВОРОТА НА СУШЕ

Обязательными параметрами для изучения биогеохимических циклов в природе являются следующие показатели.


  1. Биомасса и ее фактический прирост (фито-, зоо-, микробная масса отдельно).

  2. Органический опад (количество, состав).

  3. Органическое вещество почвы (гумус, неразложившиеся органические остатки).

  4. Элементный вещественный состав почв, вод, воздуха, осадков, фракций биомассы.

  5. Наземные и подземные запасы биогенной энергии.

  6. Прижизненные метаболиты.

  7. Число видов, численность, состав.

  8. Продолжительность жизни видов, динамика и ритмика жизни популяций и почв.

  9. Эколого-метеорологическая обстановка среды: фон и оценка вмешательства человека.

  1. Охват точками наблюдений водораздела, склонов, террас, долин рек, озер.

  2. Количество загрязнителей, их химические, физические, биологические свойства (особенно СО, СО2, SO2, Р, NO3, NH3 Hg, Pb, Cd, H2S, углеводороды).

Для оценки характера биогеохимического круговорота экологи, почвоведы, биогеохимики используют следующие показатели.

1. Содержание зольных веществ, углерода и азота в биомассе (надземной, подземной, фито-, зоо-, микробной). Содержание этих элементов может быть выражено в % или в г/м2, т/га поверхности. Главными составными элементами живого вещества по массе являются О (65-70%) и Н (10%). На все остальные приходится 30-35%: С, N, Са (1- 10%); S, Р, К, Si (0,1-1%); Fe, Na, Cl, Al, Mg (0,01-0,1%).

Химический состав фитомассы сильно варьирует. Особенно различен состав фитомассы хвойных и лиственных лесов, травянистой растительности и галофитов (табл.13).

Таблица 13 - Минеральный состав различных групп растений суши


Тип растительности
Зольность, %
Годовой оборот минеральных

компонентов, кг/га


Преобладающие компоненты
Хвойные леса
3-7
100-300
Si, Са, Р, Мg, К
Лиственные леса
5-10
460-850
Са, К, Р, Al, Si
Тропические леса
3-4
1000-2000
Са, К, Мg, Al
Луга, степи
5-7
800-1200
Si, Са, К, S, Р
Галофитные сообщества
20-45
500-1000
Cl, SO4, Na, Мg, К
Индивидуальная значимость того или иного химического элемента оценивается коэффициентом биологического поглощения (КБП). Рассчитывают его по формуле:
КБП =
содержание элемента в золе растений (по массе)
содержание элемента в почве (или в земной коре)

  1. В 1966 году В. А. Ковда предложил использовать для характеристики средней продолжительности общего цикла углерода отношение учтенной фитобиомассы к годичному фотосинтетическому приросту фитомассы. Этот коэффициент характеризует среднюю продолжительность общего цикла синтеза - минерализации биомассы в данной местности (или на суше в целом). Расчеты показали, что для суши в целом этот цикл укладывается в период 300-400 и не более 1000 лет. Соответственно с этой средней скоростью идет освобождение минеральных соединений, связанных в биомассе, образование и минерализация гумуса в почве.

  2. Для общей оценки биогеохимического значения минеральных компонентов живого вещества биосферы В. А. Ковда предложил сопоставлять запас минеральных веществ биомассы, количество минеральных веществ, ежегодно вовлекаемых в оборот с приростом и опадом, с годовым химическим стоком рек. Оказалось, что эти величины близки: 108-9 зольных веществ вовлекается в прирост и опад и 109 - в годовой химический сток рек.

Большая часть веществ, растворенных в речных водах, прошла через биологический круговорот системы растения - почвы до того, как она влилась в геохимическую миграцию с водой в направлении океана или внутриматериковых впадин. Сопоставление проводят, рассчитывая индекс биогеохимического круговорота:

Индекс БГХК = Sб / SХ,

где Sб - сумма элементов (или количество одного элемента) в годовом приросте биомассы; Sx - сумма этих же элементов (или одного элемента), выносимых водами рек данного бассейна (или части бассейна).

Оказалось, что индексы биогеохимического круговорота очень сильно варьируют в различных климатических условиях, под покровом различных растительных сообществ, при различных условиях естественного дренажа.

4. Н. И. Базилевич, Л. Е. Родин (1964) предложили рассчитывать коэффициент, характеризующий интенсивность разложения опада и длительность сохранения подстилки в условиях данного биогеоценоза:


ИИК =
масса подстилки
масса годичного опада
По данным Н. И. Базилевич и Л. Е. Родина, индексы интенсивности разложения фитомассы наибольшие в тундре и болотах севера, наименьшие (примерно равны 1) - в степях и полупустынях.

5. Б. Б. Полынов (1936) предложил рассчитывать индекс водной миграции:

ИВМ = ХН2О / Хзк,

где ИВМ - индекс водной миграции; ХН2О - количество элемента в минеральном остатке выпаренной речной или грунтовой воды; Xзк - содержание этого же элемента в земной коре или породе.

Расчет индексов водной миграции показал, что наиболее подвижные мигранты в биосфере - Cl, S, В, Вr, I, Са, Na, Mg, F, Sr, Zn, U, Mo. Наиболее пассивны в этом отношении - Si, К, Р, Ва, Mn, Rb, Cu, Ni, Co, As, Li, Al, Fe.

^ БИОЛОГИЧЕСКИЙ КРУГОВОРОТ И ПОЧВООБРАЗОВАНИЕ

Данные геологии и палеоботаники позволили В. А. Ковде в общих чертах представить важнейшие этапы развития почвообразовательного процесса в связи с историей развития растений и растительного покрова (1973). Начало почвообразовательного процесса на Земле связано с появлением автотрофных бактерий, способных к самостоятельному существованию в наиболее неблагоприятных гидротермических условиях. Этот первоначальный процесс воздействия низших организмов на горные породы земной коры В. Р. Вильяме назвал первичным почвообразовательным процессом. Автотрофные бактерии, открытые С. Н. Виноградовым в конце XIX века, представляют собой простейшие одноклеточные организмы, насчитывающие около сотни видов. Они обладают способностью очень быстрого размножения: 1 особь в течение суток может дать триллионы организмов. К числу современных автотрофов относятся серобактерии, железобактерии и др., играющие чрезвычайно важную роль во внутрипочвенных процессах. Время появления автотрофных бактерий уходит, по-видимому, в докембрий.

Таким образом, первый синтез органического вещества и биологические циклы С, S, N, Fe, Mn, О2, H2 в земной коре были связаны с деятельностью автотрофных бактерий, использующих кислород минеральных соединений. В возникновении почвообразовательного процесса, возможно, наряду с автотрофными бактериями играли какую-то роль и неклеточные формы жизни типа вирусов и бактериофагов. Конечно, это не был почвообразовательный процесс в современном виде, так как не было корневых растений, не было скоплений гумусовых соединений и биогенного механизма. И, по-видимому, правильнее говорить о первичном биогеохимическом выветривании горных пород под воздействием низших организмов.

В докембрии появились одноклеточные сине-зеленые водоросли. С силура и девона распространились многоклеточные водоросли - зеленые, бурые, багряные. Почвообразовательный процесс усложнился, ускорился, начался в заметных количествах синтез органического вещества, и наметилось расширение малого биологического круговорота О, Н, N, S и др. элементов питания. По-видимому, как считает В.А. Ковда, почвообразовательный процесс на этих стадиях сопровождался накоплением биогенного мелкозема. Стадия первоначального почвообразования была очень длительной и сопровождалась медленным, но непрерывным накоплением биогенного мелкозема, обогащенного органическим веществом и элементами, вовлекаемыми в биологический круговорот: Н, О, С, N, P, S, Са, К, Fe, Si, A1. На этой стадии уже мог проходить биогенный синтез вторичных минералов: алюмо- и феррисиликатов, фосфатов, сульфатов, карбонатов, нитратов, кварца, а почвообразование было приурочено к мелководным областям. На суше оно имело скальный и болотный характер.

В кембрии появились и псилофиты - низкорослые растения кустарникового типа, не имевшие даже корней. Они получили некоторое распространение в силуре и значительное развитие в девоне. В это же время появляются хвощи и папоротники - обитатели влажных низменностей. Таким образом, относительно развитая форма почвообразовательного процесса началась с силура и девона, т.е. около 300-400 млн. лет назад. Однако дернового процесса не наблюдалось, так как не было травянистой растительности. Зольность папоротников и плаунов не высокая (4-6%), хвощей гораздо выше (20%). В составе золы преобладали К (30%), Si (28%) и С1 (10%). Грибная микрофлора способствовала вовлечению в биологический круговорот Р и К, а лишайники - Са, Fe, Si. Вероятно образование кислых почв (каолинито-вых аллитных, бокситовых) и гидроморфных почв, обогащенных соединениями железа.

Развитый почвообразовательный процесс сложился, по-видимому, лишь в конце палеозоя (карбон, пермь). Именно к этому времени относят ученые появление сплошного растительного покрова на суше. Кроме папоротников, плаунов, хвощей появились голосемянные растения. Преобладали ландшафты лесов и болот, сформировалась зональность климата на фоне господства теплого тропического и субтропического. Следовательно, в этот период преобладали болотный и лесной тропический почвообразовательные процессы.

Продолжался этот режим примерно до середины пермского периода, когда постепенно наступило похолодание и иссушение климата. Сухость и похолодание способствовали дальнейшему развитию зональности. Именно в этот период (вторая половина перми, триас) широкое развитие получили голосемянные хвойные растения. В высоких широтах в это время шло образование кислых подзолистых почв, в низких - почвообразование шло по пути развития желтоземов, красноземов, бокситов. Невысокая зольность (около 4%), ничтожное содержание Cl, Na, высокое содержание в золе хвои Si (16%), Са (2%), S (6%), К (6,5%) привели к расширению участия в биологическом круговороте и в почвообразовании роли Са, S, Р и уменьшению роли Si, К, Na, C1.

В юре появляются диатомовые водоросли, а в следующем за ней меловом периоде - покрытосемянные цветковые растения. С середины мелового периода широкое распространение получают лиственные породы - клен, дуб, береза, ива, эвкалипт, орех, бук, граб. Под их пологом начинает ослабевать подзолообразовательный процесс, так как в составе опада этих растений велика доля Са, Mg, К.

В третичную эпоху на Земном шаре преобладала тро пическая флора: пальмы, магнолии, секвойя, бук, каштан. Минеральный состав веществ, вовлекаемых в кругово рот этими лесами, характеризовался значительным участием Са, Mg, К, Р, S, Si, Al. Создавались тем самым экологические предпосылки для появления и развития травянистой растительности: уменьшение кислотности почв и пород, накопление элементов питания.

Громадное принципиальное значение в изменении характера почвообразовательных процессов имела смена господства древесной растительности травянистой. Мощная корневая система деревьев вовлекала в биологический круговорот значительную массу минеральных веществ, мобилизуя их для последующего поселения травянистой растительности. Кратковременность жизни травянистой растительности и сосредоточенность корневых масс в самых верхних слоях почвы обеспечивают под покровом трав пространственную концентрацию биологического круговорота минеральных веществ в менее мощной толще горизонтов с аккумуляцией в них элементов зольного питания. Таким образом, начиная со 2-й половины мелового периода, в третичном и особенно в четвертичном периодах под влиянием господства травянистой растительности распространился дерновый процесс почвообразования.

Итак, роль живого вещества и биологического круговорота в геологической истории Земли и развитии почвообразовательного процесса непрерывно возрастала. Но и почвообразование постепенно становилось одним из главных звеньев биологического круговорота веществ.


  1. Почва обеспечивает постоянное взаимодействие большого геологического и малого биологического круговоротов веществ на земной поверхности. Почва - связующее звено и регулятор взаимодействия двух этих глобальных циклов вещества.

  2. Почва - аккумулирует в себе органическое вещество и связанную с ним химическую энергию, химические элементы, тем самым регулируя скорость биологического круговорота веществ.

  3. Почва, обладая способностью динамично воспроизводить свое плодородие, регулирует биосферные процессы. В частности, плотность жизни на Земле наряду с климатическими факторами во многом определяется географической неоднородностью почвы.
Схема биологический круговорот в природе 299
Что такое
Что такое
Что такое
Что такое
Что такое
Что такое
Что такое
Что такое
Что такое
Что такое
Что такое
Что такое
Что такое
Что такое
Что такое
Теги:

Гипсокартон перегородка с полочками своими руками  Сделать оригинальную шляпу своими руками  Как сделать крючок на стену  Схемы планирования рабочего времени  Поздравление для папы с годиком сыночка  Как самому сделать палатку для уличной торговли  Поделка по сказке репка из бумаги  Как сделать пилинг головы в домашних  Поздравление с днем рождения другу баскетболисту  Как сделать фото по больше и сохранить  Как сделать лизуна из прозрачного клея пва  Крокодильчик из бисера схема плетения поэтапно  Прическа как у алена делона  3000 причесок подбор причесок  Контроллер авто своими руками  Как сделать детский праздник веселее и интереснее  Плед из элементов крючком схемы  Актрисы фильмов взрослых без макияжа  Корпус унч своими руками  Душевное поздравление подруге до слез в прозе  Схема светодиодного освещения на солнечных батареях  Очистить воду от фтора в домашних условиях  Как делать прическу как у елены  Как из жестяной банки сделать карандашницу  Прически из длинных волос со спины  

Карта сайта